SPRING 2025 MATH 540: QUIZ 3

Name:

1. Define the Euler totient function $\phi(n)$ and state at least one of its properties discussed in class. (3 points)

Solution. $\phi(n)$ is the number of positive integers less than n and relatively prime to n. Equivalently, it is the number of elements in \mathbb{Z}_n that have a multiplicative inverse.

The properties of $\phi(n)$ given in class are:

- (i) $\phi(p) = p 1$, for a prime p.
- (ii) $\phi(ab) = \phi(a)\phi(b)$, if gcd(a, b) = 1.
- (iii) $\phi(p^e) = p^e p^{e-1}$, if p is prime and $e \ge 1$.
- (iv) If $n = p_1^{e_1} \cdots p_r^{e_r}$ is a prime factorization, then $\phi(n) = (p_1^{e_1} p_1^{e_1-1}) \cdots (p_r^{e_r} p_e^{e_r-1})$.

2. Prove that if $ca \equiv cb \mod n$ and gcd(c, n) = 1, then $a \equiv b \mod n$. (4 points)

Solution. Here are two possible solutions. For the first, write 1 = sc + tn, for $s, t \in \mathbb{Z}$. Thus, $n \mid (1 - sc)$ showing that $sc \equiv 1 \mod n$, i.e., c has a multiplicative inverse modulo n. Since $ca \equiv cb \mod n$, multiplying by c we get $sca \equiv scb \mod n$, so $1a \equiv 1b \mod n$, and thus $a \equiv b \mod n$.

Alternately: We can write ca - cb = nd, for $d \in \mathbb{Z}$. Thus, using the equation above,

$$a = asc + atn$$

= $s(cb + nd) + atn$
= $scb + (sd + at)n$
= $(1 - tn)b + (sd + at)n$
= $b + (-tb + sd + at)n$

showing that $n \mid (a - b)$, so $a \equiv b \mod n$.

3. Calculate $\phi(2^4 3^2 5^5 11^2)$. You can just write the formula, you needed simplify it. (3 points) Solution. $\phi(2^4 3^2 5^5 11^2) = (2^4 - 2^3) \cdot (3^2 - 3) \cdot (5^5 - 5^4) \cdot (11^2 - 11)$.